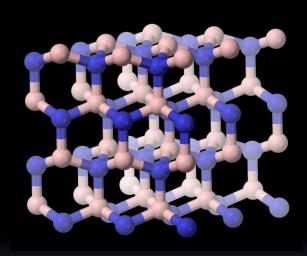


THE FUNCTIONAL ATTRIBUTES AND UTILIZATION OF BORATES IN LUBRICATION TECHNOLOGY

BORON

- Discovered in 1808 by Sir Humphrey Davy
- ❖ Brittle, black semi metallic substance
- Tends to form planar compounds



THE USE OF BORON IN LUBRICANT FORMULATION

BORON NITRIDE (BN)

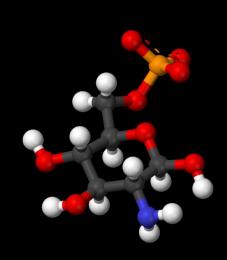
- Planar hexagonal structure
- Similar to graphite
- ❖ Works well as a solid lubricant
- Ceramic
 - Exceptional thermal stability
 - Stable in acids



THE USE OF BORON IN LUBRICANT FORMULATIONS

OIL SOLUBLE BORIC ACID ESTERS

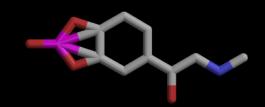
- ❖ Lubrizol Corp. 1986
- Used as an anti-wear additive in engine oil formulations
- ***** Exhibits some rust inhibition properties
- Poor hydrolytic stability



THE USE OF BORON IN LUBRICANT FORMULATIONS

OIL SOLUABLE BORATED AMINES


- ❖ Watts et al., Infineum, late 1990's
- Friction modifier and anti-wear additives for engine oils
- Useful in automatic transmission fluids
- High treat rates



THE USE OF BORON IN LUBRICANT FORMULATIONS

Borated amine and borate ester

- Tested for engine exhaust emissions
- Determined that tailpipe emissions are reduced using boron additives
- No reduction in catalytic converter performance

THE USE OF BORON IN LUBRICATION FORMULATIONS

BORIC ACID NANOPARTICLES

- Used to improve diesel fuel lubricity
- Problem dispersing particles
- Substantial friction reduction
- Problems related to suspension
- Does not tolerate water

Argonne National La, Transforum Vol. 7 No. 2 August 2007 Ali Erdimer, Nanolubricants, 2008 John Wiley & Sons

NEW TECHNOLOGY BORATE NANOPARTICLES

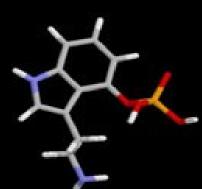
COMBINES THE BEST OF EXISTING TECHNOLOGY

- Produced using unique manufacturing process
- Create planar structures on metal surfaces
- Stable suspension
- ❖ Tolerate water
- Almost half the friction reduction of boric acid 0.037

Cantor, N. Tribology and Lubrication Technology, August 2009

BORATE NANOPARTICLES PERFORMANCE ESTABLISHED

- Difficulties lie in delivering nanoparticles to active site where friction is occurring
- Improved hydrolytic stability can lead to more environmentally friendly applications


IMPROVED DELIVERY SYSTEM

- Transports nanoparticles to where they are needed
- ❖ Keeps particles in suspension

THE DELIVERY SYSTEM IS A SPECIAL SYNTHETIC ESTER MATRIX

- ❖ Made from natural, renewable ingredients
- Highly surface active
- Forms a strong lubricating film
 - Film is self healing
- Superior anti-wear performance
- ❖Will not agglomerate like boric acid
- ❖ Tolerant of water
 - Soluble in oil and other hydrocarbons

DELIVERY MUST BE ABLE TO COVER ALL METAL CONTACTS

- Additive must be able to exist and perform in high friction contact areas
 - Nanoborate blended into the ester matrix which has a polar adhesive interaction with the metal <u>surface</u>
 - A chelation bond to the metal develops
 - Unlike anti-wear additives in oil which take up to 20 minutes to perform, nanoborate takes no time.

COMBINATION OF BORATE NANOPARTICLES AND ESTER CARRIER

- Gives improved stability and performance
- Offers the opportunity to formulate water-based lubricants
 - Replace oil as carrier with water
 - Ester/nanoparticulate borate combined with emulsifier forms emulsion lubricant when blended into water

PERFORMANCE

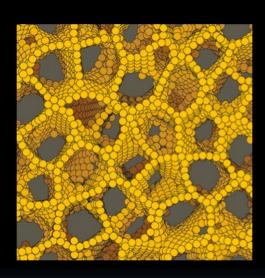
FOUR BALL WEAR

❖ 0.35 mm scar vs. 0.80mm base oil

FOUR BALL LOAD

Standard lithium-complex grease held a load of 700 kg

PERFORMANCE


LOAD CARRYING CAPACITY

❖ Oil alone	500 lbs
❖ Oil with boron nitride	- 1250 lbs
❖ Oil with PTFE	- 2500 lbs
Oil with ester/nanoparticulate borate	- 4000 lbs
❖ Water-based emulsion with nanoparticulate borate	- 4000lbs

EMULSION LUBRICANT

- Easy to spray
- ❖ No VOC
- ❖ Excellent lubricity COF o.o37
- ❖ Very little odor
- **❖**Non-toxic
- **❖**Non-flammable
- Biodegradable
- ❖ Made from renewable resources

NEW TECHNOLOGY NEW OPPORTUNITIES

- Allows new formulations of new products eliminating toxic anti-wear and extreme pressure AW/EP additives
- Formulate readily biodegradable and non-toxic lubes and greases
- Outperforms AW/EP additives presently used in lubricants
- ❖ Lower the bottom line while offering a superior product

AVAILABLE FOR CONSUMERS

- ❖ Although directed towards industry for new product development we have made it available for the public
- ❖ Add 1.12 oz per quart of oil or 6 oz for aver 5 qt sump
- MPG gains are realized due to the dramatic drop in friction
- ❖ Wear is reduced upwards of 90%
- Increased power is realized
- Less emissions
- Use at every oil drain, very cost effective

ARCHOIL POLSKA

ul. Żurawiny 1 04-937 Warszawa Tel. +48 730 036 309

E-mail: info@archoil.pl
www.archoil.pl